gre数学中的概率题剖析
新gre更侧重基本能力的考察真正提高考生的英语水平,虽然新版gre数学考试难度系数增大,但是新版gre数学最大也跑不出高三知识范围,在这里小编提醒考生的是,难度对我们不构成威胁,作为考生要把的强项发挥到极致,把新版gre数学概率部分经常考察的例题解析弄明白。
例子:
1:一道概率题:就是100以内取两个数是6的整倍数的概率.
解答:100以内的倍数有6,12,18,...96共计16个。所以从中取出两个共有16*15种方法,从1-100中取出两个数的方法有99*100种,所以P=(16*15)/(99*100)=12/505=0.024
2:1-350 inclusive 中,在100-299inclusive之间以3,4,5,6,7,8,9结尾的数的概率.
因为100-299中以3,4,5,6,7,8,9结尾的数各有20个,所以Key:(2*10*7)/350=0.4
3.在1-350中(inclusive),337-350之间整数占的百分比
Key:(359-337+1)/350=4%
4.在E发生的情况下,F发生的概率为0.45,问E不发生的情况下,F发生的概率与0.55比大小
(因为P(F)=P(F|E)+P(F|!E),
如果P(F)=1,那么P(F|!E)=0.55;
如果0.45=
解答:看了原来的答案,我差点要不考G了.无论柳大侠的推理还是那个哥哥的图,都太过分了吧?其实用全概率公式是很好解决这个问题的,还是先用白话文说一遍吧:
某一个事件A的发生总是在一定的其它条件下如B,C,D发生的,也就是说A的概率其实就是在,B,C,D发生的条件下A发生的概率之和.A在B发生时有一个条件概率,在C发生时有一个条件概率,在D发生时有一个条件概率,如果B,C,D包括了A发生的所有的条件.那么,A的概率不就是这几个条件概率之和么.
P(A)=P(A|B)+P(A|C)+P(A|D)
好了,看看这个题目就明白了.F发生时,E要么发生,要么不发生,OK?
所以,P(F)=P(F|E)+P(F|!E) 感觉上也没错吧? 给了P(F|E)=0.45,所以
P(F|!E)= P(F)-P(F|E)= P(F)-0.45
如果P(F)=1,那么P(F|!E)=0.55
如果0.45=
以上是有关备考新gre数学考试常用知识概率的基本介绍,小编认为备考新gre考试的考生,不需要浪费太多的时间在备考新gre数学上,因为数学使我们的强项,但是也不能疏忽大意,要不基本的数学知识词汇弄清楚,难点要攻克,争取把我们的优势发挥到最好。